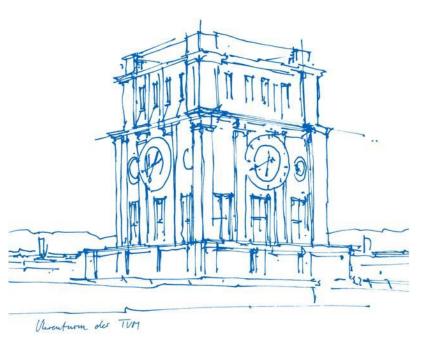
On the Way towards Defossilization of Diesel Engines


Simon Pöllmann

Technical University of Munich

Department of Mechanical Engineering

Chair of Internal Combustion Engines

Graz, 22. September 2021

"My engine is continuing to make great progress"

- Rudolf Diesel, 1895

ПΠ

BUSINESS | ENERGY | JOURNAL REPORTS: ENERGY Can E-Fuels Save the Combustion Engine?

Proponents say they should be part of a low-carbon future. But cost and efficiency remain hurdles.

Sources:

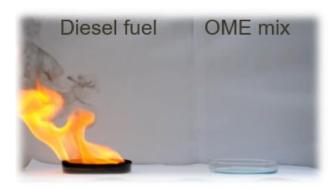
https://www.dailymail.co.uk/sciencetech/article-9239795/Fossil-fuel-pollution-causes-one-five-premature-deaths-globally-study.html https://www.reuters.com/business/retail-consumer/eu-proposes-effective-ban-new-fossil-fuel-car-sales-2035-2021-07-14/ https://www.lr.org/en/insights/articles/the-allure-of-green-fuels-looks-to-end-shippings-loveless-marriage-with-oil/ https://www.wsj.com/articles/can-e-fuels-save-the-combustion-engine-11621037390

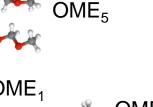
Why alternative fuels?

- Combustion of fossil fuels generates greenhouse gases and air pollutants
- Finite reserves of crude oil
- Battery-electric powertrain not always reasonable (e.g. long-haul trucks, shipping)
- Difficult handling and storage of hydrogen as an energy carrier

Solution: Liquid synthetic energy carriers! Targeting:

- Use of existing infrastructure
- Minimal adjustment of engine
- Real Mon-toxic for humans and environment
- Closed carbon-cycle
- 🕹 Lowest emissions of pollutants


Polyoxymethylene dimethyl ether (pretty close to these targets)


Polyoxymethylene dimethyl ether – OME

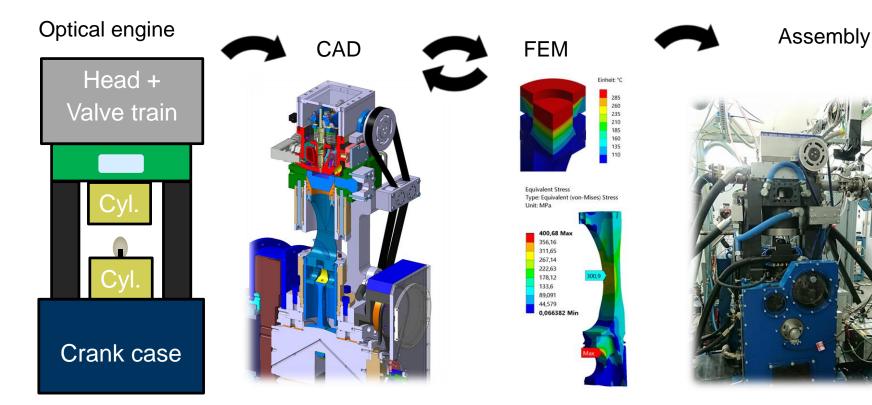
Crygenated Diesel fuel with different chain lengths Market No C-C bonds, leading to soot free combustion Promising studies with mix of OME_{3.5} 3 Synthesis from H₂ and CO₂ – using renewable energy, biomass, carbon capture

... but:

Need for a lot of energy (conv. efficiency $\sim 38 \%^{[1]}$) May attack common rubber sealings due to polarity [] Heating value (vol.) 1.7 times lower than with Diesel Ľ) Still produces pollutants, especially NOx Ľ,

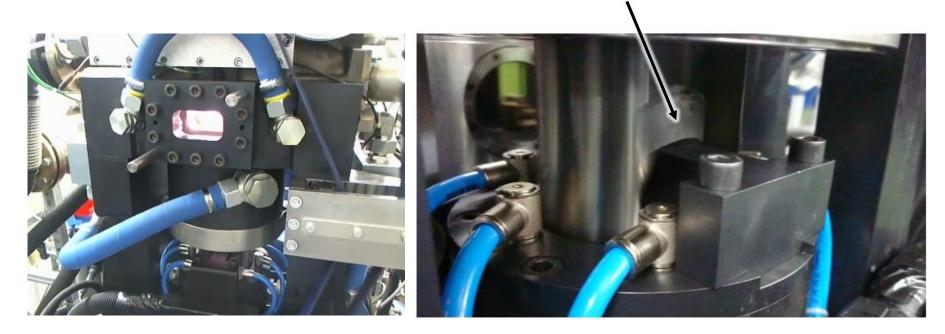
ПΠ

Experimental carrier


Single-cylinder research engine

- 1.8 l cylinder volume (heavy-duty)
- Common-rail with up to 2500 bar fuel pressure
- Injector with higher nozzle flow for OME (x1,7)
- Intercooled exhaust gas recirculation
- Exhaust gas analysis: Particle (10/23 nm), soot mass,
 VOC, CO₂, O₂, NO, NO₂, CH₄, NH₃, OME₁₋₃, ... fuel

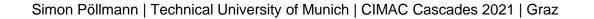
camshaft cylinder head cylinder crankshaft fuel pump mass balancing


Experimental carrier

Single-cylinder research engine

Optical setup

mirror


ТШ

Experiments

Optical combustion analysis

Diesel fuel injector (8-hole) spray flame (sooting!)

OME with exposure x 100

ТШ

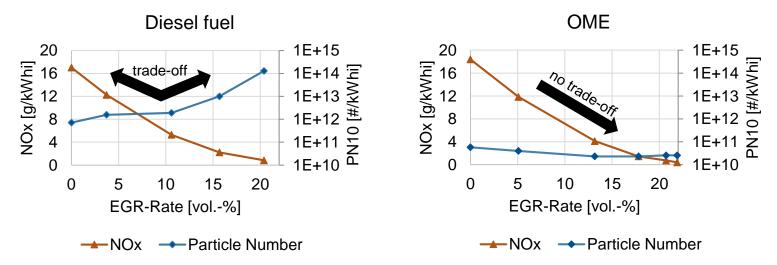
Experiments

Optical analysis

Diesel fuel

OME with exposure x 100

Findings for OME:


.

- No soot tendency, only chemiluminescence
- Earlier ignition (shorter ignition delay)
- Faster combustion in later stage
- Good mixture preparation, even at low rail pressure

Combustion analysis

Exhaust gas recirculation (EGR)

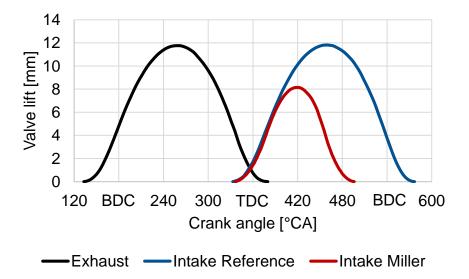
EGR variation - speed: 1200 rpm, IMEP: 13 bar, rail pressure: 1800 bar, injection pattern: PI/MI, center of combustion: 8° a. TDC

Combustion analysis

Injection pressure

Rail pressure variation - speed: 1200 rpm, IMEP: 13 bar, EGR-rate: 0%, injection pattern: PI/MI, center of combustion: 8° a. TDC

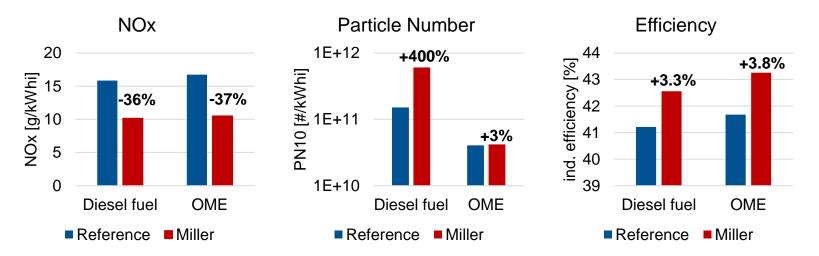
Simon Pöllmann | Technical University of Munich | CIMAC Cascades 2021 | Graz



Combustion analysis

Miller valve timing

 $oldsymbol{\lambda}$ Common measure in gasoline engines


- **Reduces effective compression**
 - \rightarrow Higher efficiency
- **Y**Reduces cylinder temperatures
 - \rightarrow Less NOx formation

Combustion analysis

Miller valve timing

Intake valve timing variation - speed: 1200 rpm, IMEP: 13 bar, EGR-rate: 0%, injection pattern: PI/MI, center of combustion: 8° a. TDC

Summary

OME as Diesel fuel substitute

OPotentially climate-neutral, energy-intensive production

- **R** Adaptation of the engine necessary
- X Extremely low particle emissions, no particle-X trade-offs
- **S** New paths for engine simplification and optimization

There is still a lot of potential and a lot to do!

Thank you! Questions?

Simon Pöllmann Chair of Internal Combustion Engines Department of Mechanical Engineering Technical University of Munich

Contact: poellmann@lvk.mw.tum.de

Graz, 22. September 2021

Special thanks to "Bayerische Forschungsstiftung" for funding the project (grant number AZ-1266-17).

