

Hybridization and Electrification of Propulsion Systems for Inland Waterways CIMAC CASCADES - September 22, 2021

Frank Mair

Public

European Inland Waterway Transportation and its Legislation

Introduction to PEM Fuel Cell Systems

3

/ 2

Hybrid Powertrain for Inland Waterway Vessels Hydrogen & Fuel Cell Projects in Shipping

5 Challenges for Fuel Cells in Marine Applications

Summary

2

6

1

3

European Inland Waterway Transportation and its Legislation

Introduction to PEM Fuel Cell Systems

Hybrid Powertrain for Inland Waterway Vess Hydrogen & Fuel Cell Projects in Shipping

5 Challenges for Fuel Cells in Marine Applications

Summary

2

4

6

Green Image and Stringent Legislation are pushing New Technologies in Marine Industry

40% reduction in 2030 70% reduction in 2050 compared to 2008

Greenhouse Gases

50% reduction in 2050 compared to 2008

SO₂

Global fuel limit of 0.5% in 2020

Heavy Fuel Oil

Ban on the use and carriage of heavy fuel oil (HFO) in the Arctic

Fuel consumption data collection by authorities started in 2019

EU Stage V - Inland Waterway Vessels (IWV)

- Apart from the reduction in allowable PM emissions, Stage V introduces PN limits for mid to large engines (P ≥ 300 kW)
- Introduction of PN limit makes the application of DPF mandatory

Public

/ 5

Emissions regulations are defined for both propulsion and auxiliary engines

The European Inland Waterway Network

 The European inland waterways cover a length of over 41.500 km, divided into navigable rivers and lakes and artificial canals.

■Railway ■Road ■IWT

Freight traffic on European inland waterways [8]

Split of freight transport per country as percentage of ton-kilometers in 2015 [1] [10]

European Inland Waterway Fleet

- More than 17000 vessels are operated on the European inland waterways
- Pure battery-electric propulsion systems can only cover smaller distances within short-sea shipping and transportation on urban waterways
- Hydrogen and fuel cells considered as a viable zero-emission solution for inland waterway transport, coastal and short-sea shipping

17

Public

Country	Dry cargo vessels	Tanker vessels	Push boats	Tug- boats	Cargo- boats	Tank barges	Total
Belgium	806	216	94	10	230	8	1364
Germany	916	419	285	140	789	44	2593
France	860	44	93	0	383	47	1427
Luxem- bourg	8	16	11	0	0	2	37
Netherlands	3993	1240	649	479	1135	51	7547
Switzerland	17	55	0	2	4	3	81
Rhine countries	6600	1990	1132	631	2541	155	13049
Bulgaria	26	4	38	13	161	5	247
Croatia	8	5	10	32	98	21	174
Hungary	78	2	26	53	300	4	463
Moldova	8	5	1	10	26	0	50
Austria	6	5	10	0	54	15	90
Poland	109	2	-	-	431	0	542
Romania	75	4	183	69	984	97	1412
Serbia	62	5	40	82	345	37	571
Slovakia	26	4	41	1	119	32	223
Czech Re- public	44	0	-	-	145	0	189
Ukraine	44	3	73	15	472	22	629
Central							
and East-	486	39	422	275	3135	233	4590
Tetel	7086	2029	1554	906	5676	388	17630
Iotal	1000	2029	1004	900	30/0	300	1/039

European inland waterway fleet [2]

Why Hydrogen and PEM Fuel Cells for Marine Applications

Zero Emission

With hydrogen produced from renewable energies, PEM (Proton Exchange Membrane) fuel cells are a zero-emission solution for marine powertrains

High Efficiencies

Peak Fuel Cell System efficiencies¹ of >60 % at low loads and e.g. 47 % at rated power

 \rightarrow H₂ consumption has a dominating influence on TCO in heavy duty and marine applications

High Power Density

High power densities of PEM fuel cell stacks allow to package the required target power within a compact enclosure

High Dynamic Capabilities

/ 9

Dynamics of t_{90} <1 s for automotive passenger car and ~3...5 s for HD applications allow to reduce the required battery capacity within a hybrid powertrain

 1 Efficiencies based on LHV (Lower Heating Value) of H $_2$ (25 °C)

AVL PEM Fuel Cell Stack & Fuel Cell System

Unit Cell

• The bipolar-plate and the MEA (Membrane Electrode Assembly) form a unit cell

Fuel Cell Stack

 The unit cell block (stacked unit cells) including end plates and compression hardware form a fuel cell stack

Fuel Cell System

 The fuel cell stack(s) incl. the Balance of Plant (BoP) components required for the supply and conditioning of reactants as well as cooling are called a Fuel Cell System

TECO Marine Fuel Cell System https://teco2030.no/

Generic Marine PEM Fuel Cell System

FC Stacks

 $\rm H_2$ and $\rm O_2$ are converted to electrical energy in an electrochemical reaction

Ox (Oxidant) System

Supply and conditioning of ambient air to the FC stacks

Fx (Fuel) System

Hydrogen from a compressed gaseous (CGH2) or liquid (LH2) storage system is supplied to the FC stacks. Recirculation of excess H_2 and control of gas concentrations within the closed anode loop.

Cx (Cooling) Systems

/ 11

Waste heat of the FC stacks and BoP components is rejected to an external cooling system or ambient

HV System

The target operating point of the FC System is controlled with power electronics (e.g. DC/DC converter) and electrical energy is supplied to the powertrain

Hybrid Powertrain – Inland Waterway Vessels (1)

 Some vessels for inland waterways are already equipped with a diesel-electric powertrain → Diesel generators connected to e.g. a 690 VAC 60 Hz switchboard

Simplified, generic Diesel-Electric Powertrain

Hybrid Powertrain – Inland Waterway Vessels (2)

- Some vessels for inland waterways are already equipped with a diesel-electric powertrain → Diesel generators connected to e.g. a 690 VAC 60 Hz switchboard
- As retrofit, fuel cell systems can be installed into the powertrain, replacing single ICE generators

Hybrid Powertrain – Inland Waterway Vessels (3)

- Some vessels for inland waterways are already equipped with a diesel-electric powertrain → Diesel generators connected to e.g. a 690 VAC 60 Hz switchboard
- As retrofit, fuel cell systems can be installed into the powertrain, replacing single ICE generators
- A pure electric powertrain can consist of multiple parallel FCSs to reach the target power and an EES system (battery) for peak shaving connected to a DC switchboard

Simplified, generic hybrid FCS/EES powertrain

Frank Mair | AVL, PEM Systems | 22 September 2021 |

AVL 🗞

Hydrogen & Fuel Cell Projects in Shipping - Examples

Vestfjorden Ferry, Norway [7]

- Longest ferry connection in Norway with 278 km
- Vessels to go in operation 2025
- Tender specification:
 85 % of the fuel must be hydrogen-based, remaining
 15 % zero- or low-emission fuel

Flagship Project – H₂ Ferry MF Hidle [3]

- Route: Judaberg-Helgøy on the west coast of Norway (260 km/d)
- 3×200 kW PEM fuel cell modules
- Battery capacity planned 0-500 kWh (need for batteries is under consideration)

ELEKTA Push Boat [5]

- Experimental vessel for use in Berlin-Brandenburg region
- FC Systems: 3x100 kW
- Photovoltaic System: 2.7 kWp
- Electric Motors: 2x210 kW
- Accumulators: 2x1025 kWh
- H₂ Fuel Bundle: 750 kg

Green Hydrogen at Blue Danube [9]

- VERBUND project for production, transportation and use of green hydrogen
- Goal is to create a trans-European green hydrogen value chain
- Hydrogen produced in Austria, Bavaria and southeastern Europe is transported via Danube to users in Austria and Germany

Challenges for Fuel Cells in Marine Applications

Legal Provision

- No satisfactory rules and/or requirements for hydrogenpowered ships from IMO, Flag States, or Class Societies
- IMO has however initiated a process to develop rules for fuel cells in the IGF Code.

Integration

- Challenging for different electric vessel powertrains → "standard" solution vs. purpose built
- Different voltage classes and interface requirements depending on the specific vessels and the power demand

System Complexity

- High target power require multiple FCS in parallel
- New challenges arise for complex FCS architectures, e.g. insulation resistance
- Hybridization leads to higher system complexity but also offers more degrees of freedom for optimization

Durability

- Marine specific requirements incl. lifetime of >35 000 h
- Challenge not only for FC stack but also BoP components → new development for marine applications
- But less demanding op. profile compared to automotive applications for e.g. dynamic operation

Costs

- Increased production volumes can significantly decrease CAPEX
- H₂ consumption has a dominating influence on total cost of ownership
 → Increased system efficiency and optimized powertrains required

Public

Summary

- Green Image and Stringent Legislation are pushing new technologies in the marine industry
- Stage V introduced a significant reduction of allowed emissions for inland waterway vessels
- With H₂ produced from renewable energies, PEM fuel cell systems are a zero-emission propulsion solution for marine propulsion systems
- PEM fuel cell systems offer high efficiencies, high power density and high dynamics
- Hybrid powertrains with fuel cells and e.g. batteries lead to higher system complexity but also offer more degrees of freedom for optimization

- Multiple hydrogen and FC projects for marine applications are currently elaborated
 - Marine PEM FCS are entering the market and first vessels with PEM FC are available

- Challenges like non-satisfactory rules, high system complexity, durability are to be solved
- This requires a close collaboration of system developers, integrators and regulatory bodies

Thank you

www.avl.com

HYTRUCK has received funding from the Austrian Climate and Energy Fund's Energy Model Region programme under grant agreement No. 868790.

Abbreviations

Public

Alternating Current
Balance of Plant
Capital Expenditures
Compressed Gaseous Hydrogen
Direct Current
Det Norske Veritas
Diesel Particulate Filter
Electrical and Electronics
Electrical Energy Storage
Fuel Cell
Fuel Cell System
Heavy Duty
High Temperature
Hazardous Voltage or High Voltage
Internal Combustion Engine
International Maritime Organization
Inland Waterway Transportation

IWV	Inland Waterway Vessel
LHV	Lower Heating Value
LH2	Liquid Hydrogen
MEA	Membrane Electrode Assembly
MT	Medium Temperature
MT PDU	Medium Temperature Power Distribution Unit
MT PDU PEM	Medium Temperature Power Distribution Unit Proton Exchange Membrane

References

- [1] Database Transport, Eurostat. http://ec.europa.eu/eurostat/web/transport/data/database. Accessed: 15.01.2018
- [2] De Europese binnenvaartvloot. https://www.informatie.binnenvaart.nl/schepen. Accessed: 15.01.2018
- [3] <u>https://flagships.eu/2019/10/04/presenting-the-flagships-h2/</u>, accessed on 15.09.2021
- [4] <u>https://issuu.com/marcogeels/docs/sbi_14-4_totaal_lr/s/11097530</u>, accessed on 15.09.2021
- [5] <u>https://www.behala.de/en/the-push-boat-with-a-whole-new-energy-system/</u>, accessed on 15.09.2021
- [6] <u>https://www.eurologport.eu/inland-waterway-vessels-uniform-technical-requirements/</u>, accessed on 16.09.2021
- [7] <u>https://www.oceanhywaycluster.no/news/the-longest-ferry-route-in-norway-is-going-hydrogen-based</u>, accessed on 16.09.2021
- [8] <u>https://www.pdfprof.com/PDF_Image.php?idt=77861&t=39</u>, accessed on 16.09.2021
- [9] <u>https://www.verbund.com/de-at/ueber-verbund/news-presse/presse/2020/11/17/greenhydrogenbluedanube</u>, accessed on 15.09.2021
- [10] MariGreen Project, Feasibility Study: "Perspectives for the use of hydrogen as fuel in inland shipping"