

Decarbonizing Large Bore Engines

CIMAC Cascades 2021

Prof. Dr. Gunnar Stiesch SVP, Head of Engineering Engines 22.09.2021

MAN Energy Solutions

Strategic Business Fields

Marine

Emission reduction in maritime applications

Energy & Storage

Sustainable generation of energy

Industries

Increased efficiency across segments

Aftersales MAN PrimeServ

50% of power for all world trade covered by our engines

of the goods traded around the world are transported via maritime shipping

of worldwide CO₂ emissions are caused by shipping (~ 1.2 bn tons of CO2)

Only with alternative green fuels

the CO₂ reduction targets can be reached

50%

IMO: Reduction of annual shipping

emissions by 2050

(compared to 2008)

Hydrogen: Important pillar for decarbonisation

Our products and solutions cover the entire e-fuels value chain

Picture Source: Logos © H-TEC SYSTEMS GmbH

PtX Technology and Reactor Competence

(L)SNG Infrastructure

There are multiple future-fuel mix scenarios

100%

emissions-reduction targets mandated by the IMO.

Energy Mix

Renewables make up a growing amount of primary energy consumption

Average carbon prices in developed and emerging regions US\$ per tonne (real 2018)

300 Developed 250 200 150 150 50 0 2015 2020 2025 2030 2035 2040 2045 2050 300 100 100 2015 2020 2025 2030 2035 2040 2045 2050

The following figure shows the projected marine fuel use until 2050 as the industry strives to meet the GHG

Influencing factors on fuel choice

Fuels Towards Carbon Neutrality

Alternative Future Fuel Options

The engine can burn it => cost, infrastructure & handling are decisive => there will be multiple fuels in parallel !

Cost of Alternative Fuels (indicative figures)

E-Fuels: Production & Handling – Engine & Plant Cost

e-Fuels: Fuel Production & Handling Costs (indicative)

Engine & Plant First Cost (Fuel Supply Syst.) (indicative) Production Cost Handling Cost Engine Cost **Rel. Fuel Cost** Plant Cost Equipment Cost (fuel supply syst.) H2 CH4 NH3 MeOH e-Diesel Rel. H2 CH4 NH3 MeOH e-Diesel **Complexity of Fuel Molecule**

The optimum e-Fuel will likely depend on vessel type, trade scheme and region – We have to expect a variety of fuels !

Dual Fuel Engine Techno

Research Centre Copenhagen

2-Stroke Modular & Future Proof Design

Built-in Fuel Flexibility - A Necessity

Fuel types	MC	ME-B	ME-C	ME-GI	ME-GA	ME-GIE	ME-LGIM	ME-LGIP
0-0.50% S VLSFO	Design	Design	Design	Design	Design	Design	Design	Design
High-S HSHFO	Design	Design	Design	Design	Design	Design	Design	Design
LNG	-	-	Retrofit***	Design	Design	Retrofit***	Retrofit***	Retrofit***
LEG (Ethane)	-	-	Retrofit***	Retrofit***	-	Design	Retrofit***	Retrofit***
Methanol / Ethanol	-	-	Retrofit**	Retrofit**	-	Retrofit**	Design	Retrofit**
LPG	-	-	Retrofit**	Retrofit**	-	Retrofit**	Retrofit**	Design
Biofuels	Design	Design	Design	Design	Design	Design	Design	Design
Ammonia****	-	-	(Retrofit**)	(Retrofit**)	-	(Retrofit**)	(Retrofit**)	(Retrofit**)

Fuel by original design of type

** One second fuel per retrofit

*** Both LNG and LEG

**** available in 2024

World's 1st LNG driven container vessel

World's 1st MeOH driven vessel

World's 1st Ethane driven vessel

World's 1st LPG driven vessel

4-Stroke Solutions towards Decarbonization

Fuel Flexibility & Robustness as Key Advantage of Combustion Engines

*) Technology development in progress, product availability subject to market demand

Uptake of dual-fuel contracting is increasing

Historical and current dual-fuel uptake.

EEXI & CII

New IMO Regulation

All ships above 400GT to be effected

EEXI: <u>Energy Efficiency Existing Ship Index (Technical efficiency)</u>

- Similar to EEDI, but for all +20.000 existing ships
- EEXI-compliance to be certified by 1 January 2024
- If non-compliance, no operation of the ship

CII: <u>Carbon Intensity Indicator</u> (Operational efficiency of all ships)

- CO2 pr. transport work, based on fuel used and distance sailed*
- Ships to be rated (A: Best, E: Worst), rating to improve over time
- Low performing ships to develop a plan of corrective actions

13

*) Typically CO2/(DWT*Nautical mile).

Dual Fuel Retrofit Conversions

Accelerating the Maritime Energy Transition

- ⇒ **Retrofits necessary** to accelerate marine energy transition; **available today**
- \Rightarrow Future-proofing investments by conversion-options

CV Feeder ELBBLUE* 48/60 => 51/60DF

*) Utilizing 20 tons of 100% renewable SNG per round-trip

15.000 TEU CV 9S90ME-C => ME-GI

BW LPG 6G60ME-C => ME-LGIP

Fuels available today: Under development: Diesel, Biodiesel, LNG / eSNG, LPG, Ethane, MeOH, Ammonia (NH_3) and Hydrogen (H_2)

Summary

Decarbonizing Large Bore Engines

- The low carbon vessels of tomorrow must be commercially viable
- Alternative **fuel selection not obvious –** optimum depends on application
- Fuel flexibility and retrofit options are decisive!
- Natural gas (LNG) is available now both engine technology and infrastructure
- Smooth, gradual transition by **drop-in of eSNG** possible
- MeOH, NH₃, H₂ as additional future fuels with zero carbon potential
- CO₂ -pricing & legislation to drive decarbonization

 must be Globally Harmonized
- Ramp-up of eFuel production is critical factor

Thank you very much!

「+>>+++++

The maritime energy transition has started - we are here to shape it

All data provided in this document is non-binding.

This data serves informational purposes only and is especially not guaranteed in any way.

Depending on the subsequent specific individual projects, the relevant data may be subject to changes and will be assessed and determined individually for each project. This will depend on the particular characteristics of each individual project, especially specific site and operational conditions.